

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0194 of 14 March 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

contains

This European Technical Assessment is

This European Technical Assessment

issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System VMZ dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

MK I Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1, D Werk 2, D

23 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

ETA-17/0194 issued on 29 November 2021

European Technical Assessment ETA-17/0194

Page 2 of 23 | 14 March 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0194

English translation prepared by DIBt

Page 3 of 23 | 14 March 2023

Specific Part

1 Technical description of the product

The Injection System VMZ dynamic is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express, an anchor rod with expansion cones and external connection thread, a centring ring (only for through-setting installation), a conical washer, a hexagon nut with spherical contact surface and a locknut. For the pre-setting installation a conical washer with a bore is used. Alternatively the hexagon nut with spherical contact surface can be replaced by a spherical disc with hexagon nut.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B2, B3 and C4
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C5
Displacements under short-term and long-term loading (static and quasi-static loading)	see Annex C6
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C4 to C6

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)		
Characteristic concrete cone, splitting and pull-out fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ $\Delta N_{Rk,p,0,n}$ $(n=1 \text{ to } n=\infty)$	see Annex C1 to C3	

European Technical Assessment ETA-17/0194

Page 4 of 23 | 14 March 2023

English translation prepared by DIBt

Essential characteristic (fatigue loading, Assessment method A: Continuous function of fatigue resistance)	Performance				
Characteristic fatigue resistance under cyclic shear loading					
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ (n = 1 to n = ∞)					
Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ $(n$ = 1 to n = ∞)	see Annex C1 to C3				
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (n = 1 to n = ∞)					
Characteristic fatigue resistance under combined cyclic tension and she	ear loading				
Characteristic steel fatigue resistance a_{sn} (n = 1 to n = ∞)	see Annex C1 to C3				
Load transfer factor for cyclic tension, shear and combined tension and shear loading					
Load transfer factor ψ_{FN}, ψ_{FV}	see Annex C1 to C3				

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

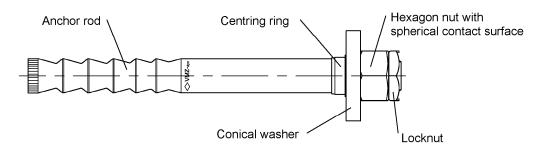
In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

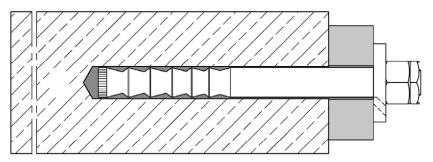
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

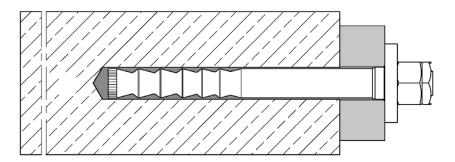
Issued in Berlin on 14 March 2023 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

Stiller


Injection System VMZ dynamic

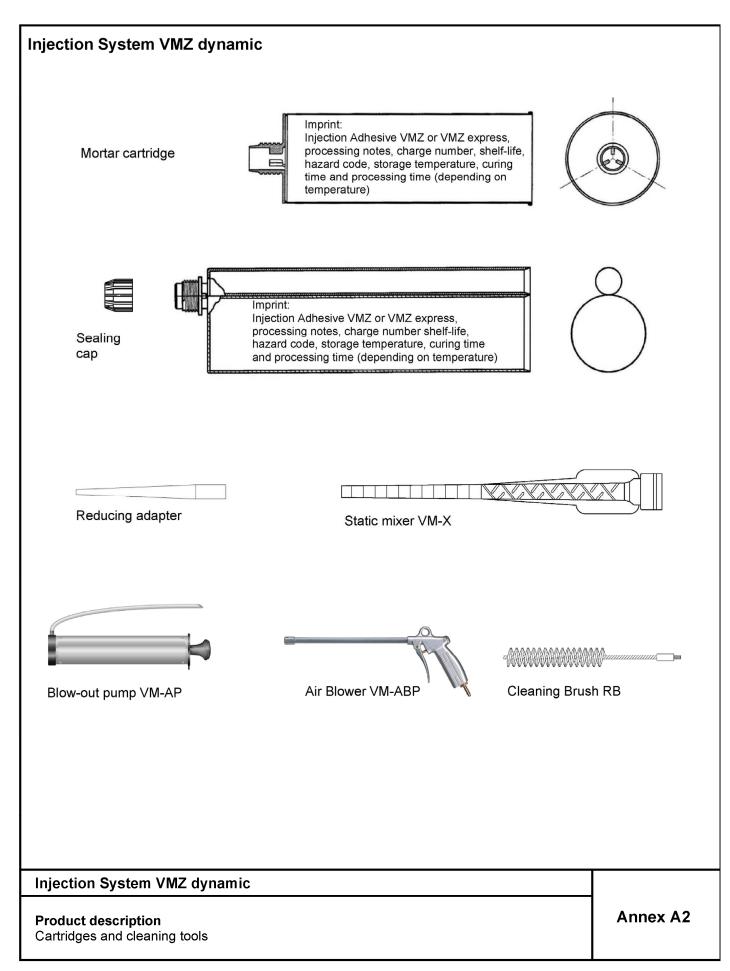
Anchor rod VMZ dyn						
100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20				



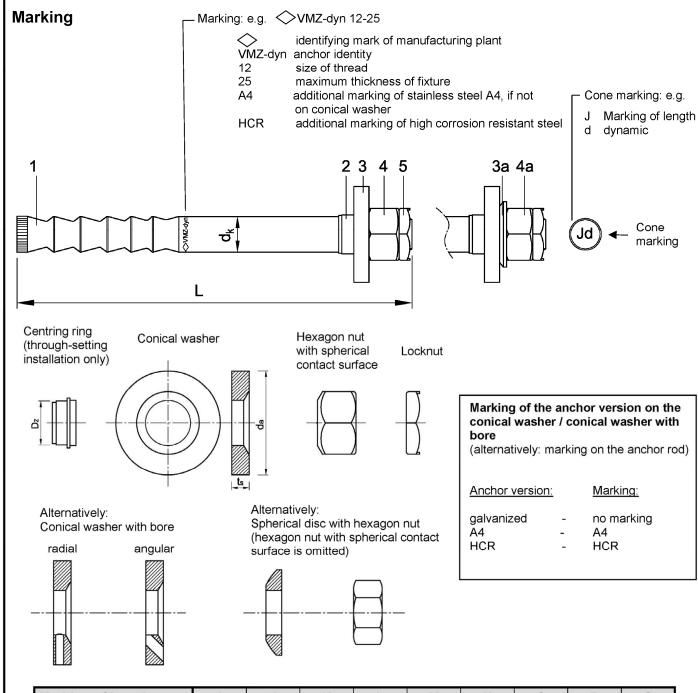
Installation situation

Pre-setting installation

Through-setting installation


Injection System VMZ dynamic

Product description


Anchor rod and installation situation

Annex A1

Marking of length	1	J	K	L	M	N	0	Р	Q
Length of anchor min ≥	139,7	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3
Length of anchor max <	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0

Marking of length	R	S	T	C	V	W	X	Y	Z	>Z
Length of anchor min ≥	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
Length of anchor max <	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

Product description Components, Marking **Annex A3**

Table A1: Materials

Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)			
1	Anchor rod	Steel, acc. to EN ISO 683-4:2018, galvanized and coated	High corrosion resistant steel 1.4529, acc. to EN 10088:2014, coated				
2	Centring ring	Plastic					
3	Conical washer	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4529, acc. to EN 10088:2014			
3a	Spherical disc	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4529, acc. to EN 10088:2014			
4	Hexagon nut with spherical contact surface	Steel, galvanized	EN ISO 3506-2:2020, stainless steel, Property class 70, 1.4401 or 1.4571,	EN ISO 3506-2:2020, high corrosion resistant steel, Property class 70, 1.4529 or 1.4565,			
4a	Hexagon nut		acc. to EN 10088:2014	acc. to EN 10088:2014			
5	Locknut	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel, 1.4565, 1.4529 or 1.4547, acc. to EN 10088:2014			
6	Mortar Cartridge	Vinylester resin, styrene-free					

Table A2: Dimensions

Part	Anchor size				100 M12	125 M16	170 M20
		Thread		-	M12	M16	M20
		Effective anchorage depth	h _{ef} ≥	[mm]	100	125	170
1	Anchor rod	Shaft diameter	$d_k =$	[mm]	12,5	16,5	22,0
		Longth	L _{min}	[mm]	143	180	242
		Length	L _{max}	[mm]	531	565	623
2	Centring ring	External diameter	Dz	[mm]	14	18	23,5
3	Canical washer	Thickness	ts	[mm]	6	7	8
	Conical washer	External diameter	da≥	[mm]	30	38	50
3a	Spherical disc	External diameter	ds =	[mm]	24	30	36
4	Hexagon nut with spherical contact surface	Width across nut	SW	[mm]	18 / 19	24	30
4a	Hexagon nut	Width across nut	SW	[mm]	19	24	30
5	Locknut	Width across nut	SW	[mm]	19	24	30

Injection System VMZ dynamic	
Product description Materials and dimensions	Annex A4

Specifications of intended use

Injection System VMZ dynamic		100 M12	M12 125 M16 170				
Fatigue cyclic loading			✓				
Static and quasi-static action			✓				
Seismic action (Category C1 + C2)	Seismic action (Category C1 + C2)			✓			
Cracked or uncracked concrete	✓						
Strength classes acc. to EN 206:20	C20/25 to C50/60						
Compacted reinforced or unreinforce weight concrete without fibers acc. t EN 206:2013+A1:2016	✓						
Temperature range I -40	°C to +80 °C		m long-term temperati n short-term temperat				

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions:
 Intended use of materials according to Annex A4, Table A1 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to:
 - EOTA TR 061:2020 (Design method I and II) or
 - EN 1992-4:2018

Installation:

- Anchor shall only be used as a complete fastening unit delivered in series. Components of the anchor must not be replaced.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the site manager.
- Installation admissible in dry and wet concrete and in water-filled borehole.
- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C (for the standard variation of temperature after installation).
- It must be ensured that icing does not occur in the drill hole.
- Installation direction D3: vertically downwards and upwards as well as horizontally.
- Drilling by hammer drill bit, compressed air drill or vacuum drill bit.
- The filling of the annular gap can be omitted if it is ensured that the anchor is only loaded in axial direction.

Injection System VMZ dynamic	
Intended use Specifications	Annex B1

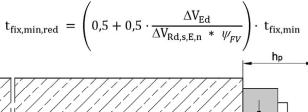
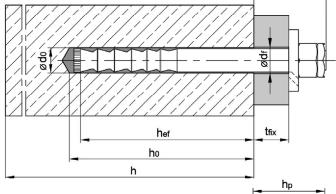
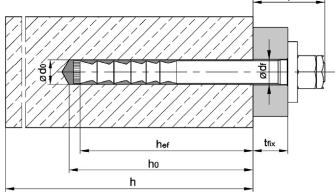


Table B1: Installation parameters


Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]		100		125	170
Nominal diameter of drill hole	d ₀ =	[mm]	14		18		24
Depth of drill hole 1)	h₀ ≥	[mm]		105		130	180
Diameter of cleaning brush	D≥	[mm]	15,0		19,0		25,0
Installation torque	T _{inst} =	[Nm]		30	50		80
Diameter of clearance hole in the fixture	d _f =	[mm]	15		19		25
Fixture thickness ²⁾	$t_{\text{fix,min}} \geq$	[mm]	12		16		20
Fixture trickness 5	$t_{\text{fix,max}} \leq$	[mm]			200		
Overstand	h _p =	[mm]	31 + t _{fix}	24 + t _{fix}	39 + t _{fix}	30 + t _{fix}	48 + t _{fix}

¹⁾ If the present fixture thickness is lower than the maximum fixture thickness of the anchor, the depth of drill hole should be increased accordingly


²⁾ $t_{\text{fix,min}}$ may be replaced by $t_{\text{fix,min,red}}$, if, when determining the anchor under the highest load, the action ΔV_{Ed} is smaller than the fatigue resistance in transverse direction

Pre-setting installation

Through-setting installation

Injection Sy	/stem ˈ	VMZ d	ynamic
--------------	---------	-------	--------

Intended use Installation parameters

Annex B2

Table B2: Minimum thickness of concrete and minimum spacing and edge distance

Anchor size			100 M12	125 M16	170 M20		
Minimum thickness of concrete member	h _{min}	[mm]	130	160	220		
Cracked concrete							
Minimum spacing	Smin	[mm]	50	60	80		
Minimum edge distance 1)	C _{min}	[mm]	70 (50)	80 (60)	110 (80)		
Uncracked concrete							
Minimum spacing	Smin	[mm]	80	60	80		
Minimum edge distance	C _{min}	[mm]	75	80	110		

¹⁾ Values in brackets are valid if edge reinforcement d = 8 mm is installed

Injection System VMZ dynamic

Intended use
Minimum thickness of concrete, spacing and edge distances

Annex B3

Table B3: Processing time and curing time, VMZ

Temperature in the drill hole	Maximum processing time	Minimum curing time in dry concrete 1)							
- 15 °C to - 10 °C	45 min	7 d							
- 9 °C to - 5 °C	45 min	10:30 h							
- 4 °C to - 1 °C	45 min	6:00 h							
0 °C to + 4 °C	20 min	3:00 h							
+ 5 °C to + 9 °C	12 min	2:00 h							
+ 10 °C to + 19 °C	6 min	1:20 h							
+ 20 °C to + 29 °C	4 min	45 min							
+ 30 °C to + 34 °C	2 min	25 min							
+ 35 °C to + 39 °C	1,4 min	20 min							
+ 40 °C	1,4 min	15 min							
	Cartridge temperature ≥ 5°C								

¹⁾ Curing time in wet concrete shall be doubled

Table B4: Processing time and curing time, VMZ express

Temperature in the drill hole	Maximum processing time	Minimum curing time in dry concrete 1)					
- 5 °C to - 1 °C	20 min	4:00 h					
0 °C to + 4 °C	10 min	2:00 h					
+ 5 °C to + 9 °C	6 min	1:00 h					
+ 10 °C to + 19 °C	3 min	40 min					
+ 20 °C to + 29 °C	1 min	20 min					
+ 30 °C	1 min	10 min					
Cartridge temperature ≥ 5°C							

¹⁾ Curing time in wet concrete shall be doubled

Injection System VMZ dynamic	
Intended use Processing time and curing time	Annex B4

Installation instructions – Through-setting installation Hole drilling 90 Drill hole perpendicular to concrete surface with hammer drill, compressed air drill or vacuum drill bit. Cleaning Drill hole must be cleaned directly prior to installation of the anchor all sizes Cleaning with compressed air min. 6 bar Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and 2a blow out drill hole along the entire depth with back and forth motion at least two times. Check diameter of Cleaning Brush. If brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. **(IIIIIIIIIIIIIII** 2b Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. min. 6 bar Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least 2c two times. 2 Manual cleaning (alternative cleaning method) M12 - M16 Blow out drill hole from the bottom using Blow-out Pump at least 2a two times. M12 - M16 Check diameter of Cleaning Brush. If brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. **(IIIIIIIIIIIIIIII** 2b Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. Blow out drill hole from the bottom using Blow-out Pump at least 2c two times. M12 - M16

Injection System VMZ dynamic	
Intended use Installation instructions – Through-setting installation	Annex B5

Installation instructions - Through-setting installation (continuation)

Injection Check minimum shelf-life on VMZ cartridge. Never use when expired. Remove cap from VMZ cartridge. Screw static mixer on cartridge. When using a new 3 cartridge always use a new static mixer. Never use cartridge without static mixer and never use static mixer without helix inside. Insert cartridge in dispenser. Before injecting discard mortar (at least 2 full strokes min.2x 4 or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar. min. 10cm Prior to injection, check if static mixer reaches the bottom of the drill hole. If it does not reach the bottom, plug mixer extension onto static mixer, in order to properly 5 fill the drill hole. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets. Insertion of anchor rod Insert the pre-assembled anchor within processing time by hand, rotating slightly up to the full embedment depth, until the conical washer is in contact with the fixture. The anchor rod is properly set when the annular gap between anchor rod 6 and fixture is completely filled. If no mortar is visible on the surface of the fixture, pull out the anchor rod immediately, let the mortar cure, drill out the hole and start again from step 2. Follow minimum curing time shown in Annex B4 as well as on cartridge label. 7 During curing time anchor rod must not be moved or loaded. Remove excess mortar after curing time. 8 Remove locknut. (1.) Tinst 2, 1. Apply installation torque T_{inst} according to Table B1 by using torque wrench. Po Tenru 9 2. Screw on locknut until hand tight then tighten 1/4 to 1/2 turn using a screw wrench.

Injection System VMZ dynamic Intended use Installation instructions – Through-setting installation (continuation) Annex B6

Installation instructions – Pre-setting installation Hole drilling Drill perpendicular to concrete surface with hammer drill, vacuum drill or compressed air drill. Cleaning Drill hole must be cleaned directly prior to installation of the anchor all sizes Cleaning with compressed air min. 6 bar Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least 2a two times. Check diameter of Cleaning Brush. If brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. 2b Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. min. 6 bar Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and 2c blow out drill hole along the entire depth with back and forth motion at least two times. 2 M12 - M16 Manual cleaning (alternative cleaning method) 2a Blow out drill hole from the bottom using Blow-out Pump at least two times. M12 - M16 Check diameter of Cleaning Brush. If brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn 2b on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. Blow out drill hole from the bottom using Blow-out Pump at least two times. 2c

Injection System VMZ dynamic	
Intended use Installation instructions – Pre-setting installation	Annex B7

M12 - M16

Installation instructions – Pre-setting installation (continuation)

Injection Check minimum shelf-life on VMZ cartridge. Never use when expired. Remove cap from VMZ cartridge. Screw static mixer on cartridge. When using a new cartridge 3 always use a new Mixer Nozzle. Never use cartridge without static mixer and never use static mixer without helix inside. Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes min.2x or a line of 10 cm) until it shows a consistent grey colour. 4 Never use this mortar. min. 10cm Prior to injection check if static mixer reaches the bottom of the drill hole. If it does not reach the bottom, plug mixer extension onto static mixer in order to properly fill 5 the drill hole. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets. Insertion of anchor rod Mark the embedment depth on the anchor rod. Insert the anchor rod by hand, rotating slightly up within processing time. The anchor rod is properly set when 6 excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2. ≣°с Follow minimum curing time shown in Annex B4 as well as on cartridge label. 7 During curing time anchor rod must not be moved or loaded. 8 Remove excess mortar after curing time. **(2**, 1. Fixture, washer and nut (without centring ring) can be mounted. 1. T_{inst} 3. 2. Apply installation torque T_{inst} according to Table B1 by using torque 9 3. Screw on locknut hand-tight then tighten 1/4 to 1/2 turn using a screw wrench. Annular gap between anchor rod and fixture must be filled with injection mortar through the bore of the conical washer using the adapter plugged onto the static 10 mixer. The annular gap is properly filled when excess mortar seeps out.

Injection System VMZ dynamic

Intended use

Installation instructions – Pre-setting installation (continuation)

Annex B8

Installation instructions – Installation with clearance between concrete and anchor plate (if the fastener is only loaded in axial direction)

Work steps 1 - 5 as illustrated in Annex B5 and B6 Insertion of anchor rod Inserting the pre-assembled anchor within processing time by hand, rotating slightly until the 6 conical washer lies against the fixture. Check for excess mortar seeping out of the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2. 7 The annular gap in the fixture does not have to be filled. Follow minimum curing time shown in Annex B4 as well as on cartridge label. During curing 8 time anchor rod must not be moved or loaded. 9 Remove locknut after curing time and backfilling of anchor plate. Nm Tinst 1. Apply installation torque T_{inst} according to Annex B2 (Table B1) by using torque wrench. 10 2. Screw on locknut hand-tight then tighten 1/4 to 1/2 turn using a screw wrench.

Injection System VMZ dynamic

Intended use

Installation instructions – Installation with clearance between concrete and anchor plate

Annex B9

Table C1: Characteristic values of the fatigue resistance under tension load after n load cycles without static actions (F_{Elod} = 0) design method I according to TR 061

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20	
Steel failure				1				
Characteristic resistance without static actions [kN]			$\Delta {\sf N}$ Rk,s,0,n					
		1	53,9	53,9	83,4	83,4	112,1	
		≤ 10 ³	48,3	52,6	78,8	72,5	92,7	
		≤ 3·10³	45,9	50,9	77,1	68,2	89,9	
		≤ 10 ⁴	41,4	47,6	73,1	62,4	83,4	
Number of load cycles	າ	≤ 3·10⁴	35,9	42,8	66,3	56,7	73,8	
		≤ 10 ⁵	29,1	36,3	55,8	50,5	60,9	
		≤ 3·10 ⁵	24,2	30,1	45,5	45,7	50,7	
		≤ 10 ⁶	21,1	24,9	37,4	41,8	44,9	
		> 10 ⁶	20,1	21,2	34,0	37,3	43,5	
Partial factor	γMs,fat,r	[-]		accor	ding to TR 06	1, Eq. (3)		
Exponent for combined loading	αsr	[-]	1,5	1,2	1,5	1,5	1,5	
Pull-out								
Characteristic resistance without static actions	$\Delta N_{Rk,p,0,r}$	[kN]		(ΔΝ _ε	Rk,s,0,n / γMs,fat,n) ·γ _{Mp,fat}		
Partial factor	γMp,fa	[-]			1,5			
Concrete failure								
Characteristic	$\Delta N_{\text{Rk,c,0,r}}$	[kN]		1	$\eta_{k,c,N,fat,n} \cdot \mathbf{N}_R$	k,c ¹⁾		
resistance without – static actions	$\Delta N_{\text{Rk,sp,0,r}}$	[kN]		r	∖ k,c,N,fat,n · NRk	(,sp ¹)		
Reduction factor		[-]			η k,c,N,fat,n			
		1			1,0			
		≤ 10 ³			0,932			
		≤ 3·10 ³			0,893			
Number of load cycles		≤ 10 ⁴ ≤ 3·10 ⁴			0,841 0,794			
Number of load cycles	·	≤ 10 ⁵			0,794			
	-	<u> </u>			0,722			
		≤ 10 ⁶			0,704			
		> 10 ⁶			0,693			
Effective anchorage depth	h _{ef}	[mm]		100		125	170	
Partial factor	γMc,fat	[-]			1,5			
Exponent for combined loading	ας	[-]			1,5			
Load-transfer factor for fastener groups	ΨFN	[-]			0,79			

1) see table C4

Injection System VMZ dynamic

Performance

Characteristic fatigue resistance under tension load, design method I according to TR 061

Annex C1

Table C2: Characteristic values of the fatigue resistance under shear load after n load cycles without static actions (F_{Elod} = 0) design method I according to TR 061

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20		
Steel failure									
Characteristic resistance without static actions	[kN]			$\Delta V_{Rk,s,0,n}$					
	•	1	3	34,0	(63,0	149,0		
		≤ 10 ³	27,6	31,3		54,0	113,5		
		3⋅10³	23,8	28,3		17,2	91,6		
		≤ 10 ⁴	18,6	23,5		36,5	65,0		
Number of load cycles n		3.10⁴	14,1	18,1		26,2	43,9		
		≤ 10 ⁵	10,5	12,8		18,4	29,0		
		3·10 ⁵	8,9	9,8		15,6	23,2		
		≤ 10 ⁶	8,2	8,5		15,0	21,3		
		> 10 ⁶		8,2		15,0	21,1		
·	Ms,fat,n	[-]		accord	ling TR 061, E	(q. (3)			
Exponent for combined loading	αsn	[-]	1,5	1,2	1,5	1,5	1,5		
Concrete failure									
			η _{k,c,V,fat,n} · V _{Rk,cp} ¹⁾						
			η k,c,V,fat,n \cdot VRk,c $^{1)}$						
Reduction factor		[-]	ηκ,c,N,fat,n						
		1	1,0						
		≤ 10³	0,799						
		3·10 ³	· ·						
		≤ 10 ⁴	'						
Number of load cycles n		3·10 ⁴	0,700						
·		≤ 10 ⁵	0,680						
		3·10 ⁵	0,668						
		≤ 10 ⁶			0,660				
		> 10 ⁶			0,652				
Effective anchor length	lf	[mm]	,	100	<u>_</u>	125	170		
Outside diameter		[mm]		14		18	24		
		[-]	1,5						
Exponent for combined loading	ας	[-]			1,5				
Load-transfer factor for fastener groups	Ψεν	[-]			0,81				

¹⁾ see table C4

Injection System VMZ dynamic	
Performance Characteristic fatigue resistance under shear load for design method I according to TR 061	Annex C2

Table C3: Characteristic fatigue limit resistance for design according to EN 1992-4:2018 and design method II according to TR 061

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20	
Tension load								
Steel failure								
Characteristic fatigue resistance	Δ N Rk,s,0,∞	[kN]	20,1	21,2	34,0	37,3	43,5	
Partial factor	γMs,fat	[-]		1,35				
Load-transfer factor for fastener groups	ΨFN	[-]	0,79					
Pull-out								
Characteristic fatigue resistance	Δ N Rk,p,0,∞	[kN]		(Δ N _{Rk}	_{,s,0,∞} / γ _{Ms,N,fa}	t)・γ _{Mp,fat}		
Partial factor	γMp,fat	[-]			1,5			
Concrete failure								
Characteristic fatigue	Δ N Rk,c,0,∞	[kN]			0,693 N _{Rk,c}	, 1)		
resistance	$\Delta N_{\text{Rk,sp,0,}\infty}$	[kN]			0,693 N _{Rk,s}	p 1)		
Effective anchorage depth	h _{ef}	[mm]		100	125		170	
Partial factor	γMc,fat	[-]	1,5					
Shear load								
Steel failure without lever	arm							
Characteristic fatigue resistance	ΔV _{Rk,s,0,∞}	[kN]	8,2 15,0		15,0	21,1		
Partial factor	γMs,fat	[-]	1,35					
Load-transfer factor for fastener groups	Ψεν	[-]			0,81			
Concrete pry-out failure								
Characteristic fatigue resistance	ΔV _{Rk,cp,0,∞}	[kN]	0,652 V _{Rk,cp} ¹⁾					
Partial factor	γMc,fat	[-]			1,5			
Concrete edge failure								
Characteristic fatigue resistance	ΔV _{Rk,c,0,∞}	[kN]			0,652 V _{Rk,c}	, 1)		
Effective length of anchor	lf	[mm]	100			125	170	
Outside diameter of anchor	d _{nom}	[mm]	14		18		24	
Partial factor	γMc,fat	[-]	1,5					
Exponents for combined	$lpha_{ extsf{s}}$	[-]	1,5	1,2		1,5	1,5	
loading	$\alpha_{ extsf{c}}$	[-]	1,5					

Injection System VMZ dynamic

Performance

Characteristic fatigue limit resistance for design according to EN 1992-4 and design method II according to TR 061

Annex C3

Table C4: Characteristic values under tension load for static and quasi-static or seismic action

Anchor s	ize / v	ersion			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20
Steel failu	ure						
Character	istic re	esistance	$N_{ m Rk,s}$ $N_{ m Rk,s,C1}$ $N_{ m Rk,s,C2}$	[kN]	57	111	188
Partial fac	tor		γMs	[-]	1,5		
Pull-out f	ailure						
		uncracked concrete	N _{Rk,p}	[kN]	49,2	68,8	109
Character resistance		cracked concrete	$N_{Rk,p}$	[kN]	34,4	48,1	76,3
(C20/25)	-	seismic C1	N _{Rk,p,C1}	[kN]	36,0	43,7	88,2
,		seismic C2	$N_{Rk,p,C2}$	[kN]	17,6	26,1	59,7
Concrete	cone	failure					
Character	istic e	dge distance	C _{cr,N}	[mm]		1,5 • h _{ef}	
Factor k1		uncracked concrete	k ucr,N	[-]	11,0		
racioi ki		cracked concrete	k cr,N	[-]		7,7	
Effective anchorage depth hef		h _{ef}	[mm]	100	125	170	
higher val	ue for thick	of splitting failure, N _{Rk,s} N _{Rk,sp} of case 1 and concrete				250	340
Case 1	(C20	,	N^0 Rk,sp	[kN]	40	50	109
	Char dista	acteristic edge nce	C cr,sp	[mm]	1,5 • h _{ef}		
00		acteristic resistance	N^0 Rk,sp	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c}]		
Case 2	_	acteristic distance	C cr,sp	[mm]	2 ⋅ h _{ef}	2• h _{ef}	1,5 • h _{ef}
Minimum	thick	ness of concrete	$h_{\text{min},2} \geq$	[mm]	130	160	220
Case 1	(C20		$N^0_{Rk,sp}$	[kN]	30	40	75
	1	acteristic e distance	C cr,sp	[mm]		1,5 • h _{ef}	
_		acteristic resistance	N^0 Rk,sp	[kN]		min [$N_{Rk,p}$; $N^0_{Rk,c}$]	
Case 2	_	acteristic distance	C cr,sp	[mm]	3 ∙ h _{ef}	3 ⋅ h _{ef}	2,6 • h _{ef}
Increasing N _{Rk,p} and I	-		Ψο	[-]		$\left(\frac{f_{\text{ck}}}{20}\right)^{0.5}$	
Installatio	n facto	or	γinst	[-]		1,0	

Injection System VMZ dynamic	
Performance Characteristic values for tension load under static and quasi static or seismic action	Annex C4

Table C5: Characteristic values under shear load for static and quasi-static or seismic action

Anchor size / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20
Steel failure without lever arm					
	V^0 Rk,s	[kN]	34	63	149
Characteristic resistance	V^0 Rk,s,C1	[kN]	27,2	39,1	82,3
	V ⁰ Rk,s,C2	[kN]	27,2	50,4	108,8
Partial factor	γMs	[-]		1,25	
Ductility factor	k ₇	[-]		1,0	
Steel failure with lever arm					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	105	266	519
Partial factor γ _{Ms} [-]				1,25	
Concrete pry-out failure					
Pry-out factor k ₈ [-]		2,0			
Concrete edge failure					
Effective length of anchor in shear load	l _f	[mm]	100	125	170
Diameter of anchor	d_{nom}	[mm]	14	18	24
Installation factor	γinst	[-]		1,0	
Factor for anchorages with filled annular gap	$lpha_{\sf gap}$	[-]		1,0	

Injection System VMZ dynamic	
Performance Characteristic values under shear load for static and quasi-static or seismic action	Annex C5

Table C6: Displacements under tension load for static and quasi-static or seismic action

Anchor size / version			100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20		
Tension load in cracked concrete	N	[kN]	17,1	24	38		
Dianlacements	δ_{N0}	[mm]	0,6	0,7	0,8		
Displacements	$\delta_{\text{N}\infty}$	[mm]	1,3	1,3	1,3		
Tension load in uncracked concrete	N	[kN]	24	33	53,3		
Diantagements	δηο	[mm]	0,4	0,6	0,6		
Displacements	δη∞	[mm]	1,3	1,3	1,3		
Displacements under seismic tension loads C2							
Dienlegemente	$\delta_{\text{N,C2(DLS)}}$	[mm]	1,1	1,5	1,9		
Displacements -	$\delta_{\text{N,C2(ULS)}}$	[mm]	3,0	4,4	4,5		

Table C7: Displacements under shear load for static and quasi-static or seismic action

Anchor size / version		100 M12 100 M12 A4 100 M12 HCR	125 M16 125 M16 A4 125 M16 HCR	170 M20		
Shear load	V	[kN]	19,3	36	75	
Displacements	δνο	[mm]	3,3	3,8	4,3	
	δν∞	[mm]	5,0	5,7	6,5	
Displacements under seismic shear loads C2						
Displacements	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,5	2,9	3,5	
	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,1	6,8	9,3	

Injection System VMZ dynamic	
Performance Displacements under static and quasi-static or seismic action	Annex C6